翻訳と辞書 |
Classical unified field theories : ウィキペディア英語版 | Classical unified field theories Since the 19th century, some physicists have attempted to develop a single theoretical framework that can account for the fundamental forces of nature – a unified field theory. Classical unified field theories are attempts to create a unified field theory based on classical physics. In particular, unification of gravitation and electromagnetism was actively pursued by several physicists and mathematicians in the years between World War I and World War II. This work spurred the purely mathematical development of differential geometry. Albert Einstein is the best known of the many physicists who attempted to develop a classical unified field theory. This article describes various attempts at a classical (non-quantum), relativistic unified field theory. For a survey of classical relativistic field theories of gravitation that have been motivated by theoretical concerns other than unification, see Classical theories of gravitation. For a survey of current work toward creating a quantum theory of gravitation, see quantum gravity. ==Overview==
The early attempts at creating a unified field theory began with the Riemannian geometry of general relativity, and attempted to incorporate electromagnetic fields into a more general geometry, since ordinary Riemannian geometry seemed incapable of expressing the properties of the electromagnetic field. Einstein was not alone in his attempts to unify electromagnetism and gravity; a large number of mathematicians and physicists, including Hermann Weyl, Arthur Eddington, Theodor Kaluza, and R. Bach also attempted to develop approaches that could unify these interactions. These scientists pursued several avenues of generalization, including extending the foundations of geometry and adding an extra spatial dimension.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Classical unified field theories」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|